Fast Low Rank Approximation of a Sylvester Matrix by Structured Total Least Norm
نویسندگان
چکیده
The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with a Sylvester matrix. In this paper, we present an algorithm based on fast Structured Total Least Norm(STLN) for constructing a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of given degree.
منابع مشابه
Fast Implementation of Low Rank Approximation of a Sylvester Matrix
In [16], authors described an algorithm based on Structured Total Least Norm (STLN) for constructing a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of given degree. For their algorithm, the overall computation time depends on solving a sequence least squares (LS) problems. In this paper, a fast implementation for solving these LS problems i...
متن کاملComputing Approximation GCD of Several Polynomials by Structured Total Least Norm
The task of determining the greatest common divisors (GCD) for several polynomials which arises in image compression, computer algebra and speech encoding can be formulated as a low rank approximation problem with Sylvester matrix. This paper demonstrates a method based on structured total least norm (STLN) algorithm for matrices with Sylvester structure. We demonstrate the algorithm to compute...
متن کاملComputing Approximate GCD of Univariate Polynomials by Structure Total Least Norm
The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certified 2-GCD for...
متن کاملComputing Approximate GCD of Multivariate Polynomials by Structure Total Least Norm
The problem of approximating the greatest common divisor(GCD) for multivariate polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certif...
متن کاملStructured Low Rank Approximation of a Sylvester Matrix
The task of determining the approximate greatest common divisor (GCD) of univariate polynomials with inexact coefficients can be formulated as computing for a given Sylvester matrix a new Sylvester matrix of lower rank whose entries are near the corresponding entries of that input matrix. We solve the approximate GCD problem by a new method based on structured total least norm (STLN) algorithms...
متن کامل